Colocalization of chaperone Cpn60, proinsulin and convertase PC1 within immature secretory granules of insulin-secreting cells suggests a role for Cpn60 in insulin processing.
نویسندگان
چکیده
Many of the mechanisms that control insulin processing and packaging by interaction with different elements along the secretory pathway remain poorly understood. We have investigated the possibility that Cpn60, a member of the heat shock protein family, may be present in rat insulin-secreting cells, participating in the proinsulin-insulin maturation process. Immunofluorescence and high resolution immunocytochemical studies revealed the presence of the Cpn60 protein all along the insulin secretory pathway, being particularly abundant over the proinsulin-containing immature secretory granules. Double-labeling experiments showed associations between Cpn60 and proinsulin, as well as between Cpn60 and PC1 convertase, with a preferential binding to proinsulin. These findings paralleled those of coimmunoprecipitation studies showing the Cpn60 chaperone and the mature form of the PC1 convertase in proinsulin immunoprecipitates, as well as the PC1 in Cpn60 immunoprecipitates from total islet cell extracts. In vitro binding of Cpn60 to proinsulin, insulin and glucagon was also documented. Cpn60, significantly abundant in proinsulin-containing secretory granules where conversion of proinsulin to insulin takes place, and the colocalization of the chaperone with proinsulin and PC1 convertase suggest that the Cpn60 protein may play a role directing precise molecular interactions during insulin processing and/or packaging.
منابع مشابه
Proinsulin endoproteolysis confers enhanced targeting of processed insulin to the regulated secretory pathway.
Recently, two different prohormone-processing enzymes, prohormone convertase 1 (PC1) and carboxypeptidase E, have been implicated in enhancing the storage of peptide hormones in endocrine secretory granules. It is important to know the extent to which such molecules may act as "sorting receptors" to allow the selective trafficking of cargo proteins from the trans-Golgi network into forming gran...
متن کاملThe granular chloride channel ClC-3 is permissive for insulin secretion.
Insulin secretion from pancreatic beta cells is dependent on maturation and acidification of the secretory granule, processes necessary for prohormone convertase cleavage of proinsulin. Previous studies in isolated beta cells revealed that acidification may be dependent on the granule membrane chloride channel ClC-3, in a step permissive for a regulated secretory response. In this study, immuno...
متن کاملSevere block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3.
The neuroendocrine processing endoproteases PC2 and PC1/3 are expressed in the beta cells of the islets of Langerhans and participate in the processing of proinsulin to insulin and C-peptide. We have previously shown that disruption of PC2 (SPC2) expression significantly impairs proinsulin processing. Here we report that disruption of the expression of PC1/3 (SPC3) produces a much more severe b...
متن کاملDistinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic beta-cells
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immat...
متن کاملHID-1 is required for homotypic fusion of immature secretory granules during maturation
Secretory granules, also known as dense core vesicles, are generated at the trans-Golgi network and undergo several maturation steps, including homotypic fusion of immature secretory granules (ISGs) and processing of prehormones to yield active peptides. The molecular mechanisms governing secretory granule maturation are largely unknown. Here, we investigate a highly conserved protein named HID...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 113 ( Pt 11) شماره
صفحات -
تاریخ انتشار 2000